TBGATEAL BULLATIN

No. TB 11-6690-252-10-4

HEADQUARTERS DEPARTMENT OF THE ARMY
Washington, DC, 15 January 1979

SUPPLEMENTARY OPERATION INSTRUCTIONS
TEST SET, INTEGRATED CIRCUIT CARD
TESTERS AN/USM-371 AND AN/USM-371A
(TEST PROGRAMS FOs AUTODIN
RRINTED CIRCUIT CARDS
NO. SM-E-546587 THRCuGH SM-E-546840)

REPORTING OP ERRORS

You can improve this bulletin by recommending improvements using DA Form 2028-2, Fill out the form and forward it to the Commander, US Army Communications and Electronics Materiel Readiness Cormand, ATIN: DRSEL~ME-MQ, Fort Monmouth, NJ 07703.

A reply will be furnished directly to you.

1. Purpose This technical bulletin provides supplemntary instructions in the test programs and associated data for troubleshooting AUTODIN printed circuit cards No. SM-E-546587 through SM-E-546840 using Test Set. Integrated Circuit Card Tester AN/USM-371 and AN/USM-371A.

NOTE:
In this bulletin, the following test sets are referenced by the indicated manufacturer's model number:
Nomencla ture
AN/USM-371
AN/NSM-3?1A

Mode. Number
Mode! ECT-102
Model ICT-103
2. Test Procedures. Refer to the general ins ructions to become Eamilias with the basic data required ε ur troubleshooting the tavity printed circuit card. Locate the schematic diagran and test data that gertain to the faulty card. Operate the test set to isolate the fault as described in the operating rrocedures.

PC CARD TEST PROGRAMS
for the
NODEL ICT-102 and ICT-103
integrated circuit card test set
ANIUSM-371 and ANIUSM371A used for
AUTODIN PC CARDS
SM-E-546 587 through SM-E-546 840

Dynatronics Products
program manual

TABLE OF CONTENTS

Card Tester Schematic or Logic Diagram Markings
(1)

Card Tester Waveform Markings.
Model ICT-102 Operating Procedures .
Model ICT-103 Operating Procedures
Pag e
1
2
2
3
3
6

Special Considerations

8
+5V EXT Power Supply Adjustment8

Printed Circuit Card Adapters
Printed Circuit Card Adapter MX-9098/USM-371
Printed Circuit Card Adapter MX-9090/USM-371
Printed Circuit Card Adapter MX-9091/USM-371
10

Printed Circuit Card Adapter MX-9092/USM-371.
Printed Circuit Card Adapter MX-9093/USM-371
Printed Circuit Card Adapter MX-9094/USM-371
Printed Circuit Card Adapter MX-9095/USM-371
Printed Circuit Card Adapter MX-9096/USM-371
Printed Circuit Card Adapter MX-9097/USM-371.

Printed Circuit Card Assembly Numbers
20.95

SM-E-546587 \qquad
SM-E-546590 \qquad
SM-E-546593 22, 23, 24,25

SM-E-546596 6, 27, 28,29
30.31

TABLE OF CONTENTS (CONT’D)

SM-E--546599	32, 33
SM-E-546602	34, 35
SM-E-546605	36, 37, 38,39
SM-E-546614	40, 41, 42, 43
SM-E-546620	44145
SM-E-546623	46,47
SM-E-546626	48,49
SM-E-546629	5051
SM-E-546632	52,53
SM-E-546635	54, 55, 56, 57
SM-E-546638	58, 59, 60,61
SM-E-546641	62,63
SM-E-546644	64,65,66,67
SM-E-546647	68, 69, 70,71
SM-E-546653	72, 73
SM-E-546656	74,75
SM-E-546659	74.75
SM-E-546662	76.77
SM-E-546807	78,79
SM-E-546810	80, 81,82,83
SM-E-546831	84,85, 86, 87 , 88, 89
SM-E-546837	92, 93
SM-E-546840	9495

Figure		Page
1	Printed Circuit Card Testers (100 Series)	1
2	Model ICT-102 Waveform Sheet Example	4
3	Model ICT-103 Waveform Sheet Example	6
4	Typical RC Network	9
5	Voltage Tolerance Versus Time Delay Chart	9
6	Printed Circuit Card Adapter MX-9089/USM-371 (23 Pin Anelex)	1
7	Printed circuit Card Adapter MX-9090/USM-371 (44/48 Pin Anelex)	2
8	Printed Circuit Card Adapter MX-9091/USM-371 (22 Pin SN-394 Red)	3
9	Printed Circuit Card Adapter MX-3092/USM-371.. (26 Pin SN-394 Black)	14
10	Printed Circuit Card Adapter MX-9093/USM-371. (22 Pin MD-674)	15
11	Printed Circuit Card Adapter MX-9094/USM-371.. (43/86 Pin FGC)	
12	Printed Circuit Card Adapter MX-9095/USM-371. (60 Pin TCU)	17
13	Printed Circuit Card Adapter MX-9096/USM-371 (46 Pin GDE)	18
14	Printed Circuit Card Adapter MX-9097/USM-371 (25 Pin FGC)	19

,

 . .
\square (25 Pin FGC)
TablePage(1) Printed Circuit Card Adapters11
2 Printed Circuit Card Adapter MX-9089/USM-371 11Pin Cross Reference
3 Printed Circuit Card Adapter MX-9090/USM-371 (12)Pin Cross Reference
4 Printed Circuit Card Adapter MX-9091/USM-371 13Pin Cross Reference
5 Printed Circuit Card Adapter MX-9092/USM-371 14Pin Cross Reference
6 Printed Circuit Card Adapter MX-9093/USM-371 15

Pin Cross Reference

7 Printed Circuit Card Adapter MX-9094/USM-371 16 Pin Cross Reference
8 Printed Circuit Card Adapter MX-9095/USM-37 Pin Cross Reference
9 Printed Circuit Card Adapter MX-9096/USM-371 Pin Cross Reference
10 Printed Circuit Card Adapter MX-9097/USM-37 Pin Cross Reference

GENERAL DESCRIPTION

Dynatronics Printed Circuit Card tester models ICT-102 and ICT-103 provide the capability for dynamically testing virtually any logic family on a visual basis Punched Hollerith cards contain individual programs which eliminate elaborate test hook-ups normally found during testing operations. No external test equipment is necessary because complete dynamic tests are performed by the Card Tester each time an individual program card is inserted into the card reader. All conditions (signal generation, power distribution, grounding, loading, test rates, etc.) are controlled by the program card and all circuits are fully tested by following a simple set of instructions and observing the GO/NO-GO and FAULT indicator lamps on the front panel. These instructions are provided in the following paragraphs.

Differences in the two models (ICT-102 and ICT-103) are illustrated in figure 1, Basically the card testers function alike with the main differences being in operator switch setting procedures. The model ICT-102 Card Tester uses rotary switches for selecting circuit under test output signal GO/NO-GO test parameters whereas the model ICT-103 Card Tester features pushbuttons in place of the rotary switches. Individual card test documentation provided in this manual can be used for either model Card Tester.

Figure 1. Printed Circuit Card Testers (100 Series)

CARD TESTER SCHEMATIC OR LOGIC DIAGRAM MARKINGS

Each schematic or logic diagram associated with inldividual programmed cards are marked such that pertinent information related to signal routing, power distribution, and other test requirements are readily available to the test technician. Markings and symbols normally found on schematic or logic diagrams are listed below:
a. Parenthesis - Used to enclose test information such as pin numbers and test signals generated by the card tester and routed to the card- under-test via the card reader, i.e., (4) indicates that this pin connects to the card tester CARD IN TEST connector, pin 4; (+CO) indicates that test signal +CO is Connected to the card-under-test via the card reader.
b. Symbol H - Placed adjacent to schematic wiring which remain at a high logic level throughout the test. A high logic level is defined as the upper level of the signal voltage levels.
c. Symbol I - Placed adjacent to schematic wiring which remain at a low logic level throughout the test. A low logic level is defined as the lower level of the signal voltage levels.

$$
\begin{gathered}
\text { Nate } \\
\text { All points not labeled } H \text { or } \text { L }) ~
\end{gathered}
$$

are dynamic i.e., are switching
during the test.
d. - HHHAHHAHAHAK - This symbol indicates input or output lines which are not tested by the card tester test program. On cards which are tested by two programs, the symbol indicates that the input or output line is not tested by either program.
e. (GRD) Symbol - Indicates that DC power ground from the card tester is applied to the card-under-test at this point.
f. (+VCC) Symbol - Independent $+5 \pm 0.5$ volt power supply internal to the card tester used for supplying + Vce to the card-under-test via the card test program. This power supply, +5 EXT, is adjusted from the rear panel of the card tester.
g. $\pm \mathbf{v},+\mathrm{V}$-V Symbols - These symbols indicate which of the three programmable power supplies are connected to the card-under-test. The output voltage values for the programmable power supplies are located on the waveform sheet in the TEST PARAMETERS table.
h. (NC) Symbol - Indicates that there is no connection made between the referenced point on the card-under-test and the card tester,

These markings are located on the schematic drawings where applicable and are defined in the TEST LEGEND contained on each schematic. Definitions for the above markings apply to both the ICT-102 and ICT-103 Card Tasters.

CARD TESTER WAVEFORM MARKINGS

Several symbols are used on the waveform charts to indicate special procedures required while testing a particular printed circuit card. These symbols and $/ \boldsymbol{\&}$ special instructions are located in the notes at the bottom of each waveform chart. Before proceeding with any test it is required that the notes be read and special instructions be carried out. For example, the notes may indicate that the Card Tester +5 volt external power supply be adjusted to +4.5 volts prior to testing the printed circuit card in question. In this case the printed circuit card could be damaged if the power supply had been adjusted to $\mathbf{+ 5 . 5}$ volts for the preceeding test. Typical notes and symbols are described below:
a. Asterisk * Symbol - This symbol when placed adjacent to a pin number (either input or output pin) on the waveform chart indicates that the signal on that pin is inverted with respect to the waveform shown. Typically these symbols are located in the INPUT PINS and OUTPUT PINS columns of the waveform chart.
b. \# Symbol - Indicates that no further edges are present in the output signal under test and the output is tested according to the steps for the model of Card Tester in use.
c. Encircled Output Pins - Encircled output pins are the more significant outputs that when tested check the majority of the circuits on the card-under-test. These output pins should be tested first to determine the general status of the card being tested. For example, when testing a multiple stage shift register with individual stages brought out on pins, the last stage of the shift register would be encircled and tested before the individual stages were tested. In this manner it is determined that the card is functionally operational after checking a single output pin.

MODEL ICT-102 OPERATING PROCEDURES

Following is the step-by-step procedure for performing dynamic test analysis on printed Circuit cards programmed for the model ICT 102 Card Tester. These instructions pertain to all printed circuit cards: specific instructions peculiar to individual printed circuit cards undergoing tests are listed as notes on the appropriate waveform sheet. Waveform sheets for individual printed circuit cards are contained in this volume. Before proceeding with any test, the operator must read the notes contained on the waveform sheet and follow any specific instructions first. In addition the necessary card adapters, card extender cables, and programmable load boards should be inserted in the Card Tester to accommodate the card to be tested. The steps listed below provide the necessary information for successful diagnostic testing of all printed circuit cards programmed for testing with the ICT-102.
a. Refer to the appropriate card under test schematic or logic diagram and corresponding waveform sheet. On the waveform sheet, locate the notes and follow the instructions pertinent to the operator. Typically, the notes are located along the bottom edge of the waveform sheet.
b. Insert the PC card adapter and/or extender cable (if required) into the CARD IN TEST connector on the front panel of the Card Tester.
c. Insert the printed circuit card to be tested into the card adapter with the component side facing up.
d. Locate the corresponding card under test program card and insert it into the card reader slot as depicted on the front panel of the Card Tester. Push the program card into the card reader slot until there is a noticeable resistance felt against the test card. Move the card reader handle clockwise until it is in the full closed position.

Figure 2. Model ICT-102 Waveform Sheet Example

Note
When initially energized, the Card Tester INPUT FAULT indicator is
illuminated. Resetting the Card Tester should clear the INPUT PAULT indicator.

If the INPUT FAULT indicator is not

 extinguished after resetting the CardTester, a true input fault is present
in the card-under-test and should be

corrected before continuing.

e. Select the output pin to be tested on the front panel IN/OUT SELECTOR switches (S2 and S3). Figure 2 shows a typical example of an output pin (pin 16) and its location on the waveform chart.
f. Set WAVEFORM TEST switch A to the first number shown under tne SWITCH SETTING heading which corresponds to the selected output pin on the waveform chart. As shown in figure 2, the number 1 would be selected by switch A.
g. Place WAVEFORM TEST switch B to the first number adjacent to SWITCH SETTING B which corresponds to the selected output pin
h. Observe the three TEST indicators on the front panel and determine the outcome of the circuit being tested. The two possible indications are explained below:

1. GO indicator lights green - circuit being tested checks good for this measurement and the operator should continue with the next step.
2. NO-GO indicator lights red - circuit being tested does not meet the output requirements for the programmed test. Recheck the switch settings to ensure that there has been no operator' error and then make the necessary notations on the card in test paper work for follow-up maintenance.
i, Place WAVEFORM TEST switches A and B to the nex pair of SWITCH SETTINGS, shown on the waveform chart, and observe the TEST indicators as in the previous step. Continue this procedure until all settings for a given output pin have been carried out and all test indications have been GO.

Note

A \# symbol in the last "B" switch setting position indicates that a NOGO indication should be observed for all "B" switch settings (1 through 12). A GO indication in any of these positions indicates a malfunction (more edges than required).
j. Change both IN/OUT SELECTOR switches to the next output pin number located on the waveform chart either adjacent to the output just tested or, if there is no adjacent number, to the next output pin number directly below the output pin just tested.
k. Place WAVEFORM TEST switches A and B to each pair of corresponding SWITCH SETTING numbers. Continue this procedure until all settings for a given output pin have been carried out and all test indications have been GO. Repeat
steps (j.) and (k.) until all output pins and corresponding SWITCH SETTINGS have been tested.

1. Rotate the card reader handle counter-clockwise to the full open position, remove the Program card from the card reader slot and insert the test card into the appropriate plastic card holder.
m. Determine whether or not the card under test requires additional testing using another program test card. If additional testing is required, repeat steps (a.) through (m.) for the additional test (s) . If no further testing is required, remove the tested printed circuit card from the card adapter.

MODEL ICT-103 OPERATING PROCEDURES

Following is the step-by-step procedure for performing dynamic test analysis on printed circuit cards programmed for the model ICT-103 Card Tester. These instructions pertain to all printed circuit cards: specific instructions peculiar to individual printed circuit cards undergoing tests are listed as notes on the appropriate waveform sheet. Waveform sheets for individual printed circuit cards are contained in this volume. Before proceeding with any test, the operator must read the notes contained on the waveform sheet and follow any specific instructions first. In addition the necessary card adapters, card extender cables, and programmable load boards should be inserted in the Card Tester to accommodate the card to be tested. The steps listed below provide the necessary information for successful diagnostic testing of all printed circuit cards programmed for testing with the ICT-103.
a. Refer to the appropriate card under test schematic or logic diagram and corresponding waveform sheet. On the waveform sheet, locate the notes and follow the instructions pertinent to the operator. Test notes are normally located along the bottom edge of the waveform sheet.
b. Insert the PC card adapter and/or extender cable (if required) into the CARD IN TEST connector on the front panel of the Card Tester.
C. Insert the printed circuit card to be tested into the card adapter with the component side facing up.
d. Locate the corresponding card-under-test program card and insert it into the card reader slot as depicted on the front panel of the Card Tester. Push the program card into the card reader slot until there is a noticeable resistance felt against the test card. Move the card reader handle clockwise until it is in the full closed position.

Figure 3. Model ICT-103 Waveform Sheet Example

Mot

If the INPUT FAULT indicator is lit, press the RESET switch. If the INPUT FAULT indicator is not extinguished after resetting the Card Tester, a true input fault is present in the card-under-test and should be corrected before continuing.
e. Select the output pin to be tested on the front panel IN/OUT SELECTOR switches ($\mathbf{S} 2$ and S3). Figure 3 shows a typical example of an output pin (pin 16) and its location on the waveform chart.
f. WAVEFORM TEST "A" display should read 0 (left digit blank). If the " $\mathrm{A}^{\text {am }}$ display does not read zero, press the reset switch/indicator.
g. Press the WAVEFORM TEST "B" switch corresponding to the first number adjacent to SWITCH SETTING B (figure 3) which corresponds to the selected output pin (switch number 7 in this example). WAVEFORM TEST display " A " changes to (01).
h. Observe the three TEST indicators on the front panel and determine the outcome of the circuit being tested. The two possible indications are explained below:

1. GO indicator lights green - circuit being tested checks good for this measurement and the operator should continue with the next step.
2. NO-GO indicator lights red - circuit being tested does not meet the output requirements for the programmed test. Recheck the switch settings to ensure that there has been no operator error and then make the necessary notations on the card in test paper work for follow-up maintenance.
i . Press WAVEFORM TEST switch B which corresponds to the next B SWITCH SETTING, shown on the waveform chart, and observe the TEST indicators as in the previous step. Each time a B switch is press the A display is incremented one count. Continue this procedure until all settings for a given output pin have been carried out and all test indications have been GO.
j. Change both IN/OUT SELECTOR switches to the next output pin number located on the waveform chart either adjacent to the output just tested or, if there is no adjacent number, to the next output pin number directly below the output pin just tested.

$$
\begin{aligned}
& \text { mote } \\
& \text { A \# symbol-in the last "B" switch } \\
& \text { setting position indicates that a GO } \\
& \text { test result should occur after "B" } \\
& \text { switch "\#" is depressed. If a NO- } \\
& \text { GO indication is observed after } \\
& \text { pressing "B" switch "\#", the circuit } \\
& \text { being tested has malfunctioned. }
\end{aligned}
$$

k. Press WAVEFORM TEST switch B for each pair of corresponding SWITCH SETTING numbers. Continue this procedure until all settings for a given OutPut pin have been carried out and all test indications have been GO. Repeat steps (\mathbf{j}.) and (k.) until all output pins and corresponding SWITCH SETTINGS have been tested.

1. Rotate the card reader handle counter-clockwise to the full open position, remove the program card from the card reader slot and insert the test card into the appropriate plastic card holder.
m. Determine whether or not the card under test requires additional testing using another program test card. If additional testing is required, repeat steps (a.) through (m.) for the additional test (s) . If no further testing is required, remove the tested printed circuit card from the card adapter.

Note

In some instances, the GO/NO-GO
test documentation may skip " A " display counts to enable the operator to ignore "don't care" transitions in the waveform under test. For example, consider the following:

A	1	2	3	4	5	6	7
B	6	9	NT	NT	3	6	10

Where NT = NO TEST

The operator would press the " B " switches in the following sequence: B-6 ($\mathbf{A}=1$), $\mathrm{B}-9$ ($\mathrm{A}=2$), B-3 three times (steps A to count 5) B-6 (A=6), B-10 (A=7) .

JUMPERS

Jumpers are required occasionally while performing tests on printed circuit cards for bypassing passive components or otherwise routing DC voltages within the card-under-test. These jumpers should be carefully placed on the card-undertest prior to inserting the program card (energizing the Card Tester) into the Card Tester and should be checked to ensure proper placement. Information concerning placement of jumpers is located in the notes at the bottom of the appropriate waveform test diagram and on the schematics or logic diagrams.

+5V EXT POWER SUPPLY ADJUSTMENT

Four power supply output voltages are available in the Card Tester which can be applied to the card-under-test. Three of these power supplies are controlled by the program test card and the fourth, the +5 Volt EXT power supply, is adjusted by the operator according to the individual test programs. When adjusting the +5 V EXT power supply to accommodate different printed circuit card families, care should be taken to adjust the output voltage within ± 100 millivolts of the recommended voltage. Exceeding the 100 millivolt tolerance can cause erroneous readings on the Card Tester GO/NO-GO indicators, as described below.

Erroneous readings caused by maladjusted power supply voltages is normally due to the RC timing circuits present on many cards. A large voltage variation in either direction will cause a significant change in the duration of the timed interval, and may result in an erroneous " B " switch count. This phenomena is illustrated in Figure 4, along with the timing variations imposed by the tolerances on the resistor and capacitor values. The curves were generated for the circuit shown in figure 4. The switching threshold of gate Y was found

Figure 4. Typical RC Network
to remain nearly constant at approximately 2.0 volts as the supply voltage was varied from 4,50 to 5.00 volts.

It is seen-in Figure 5 that with Vcc $=4.75$ and nominal RC values, Gate Y will switch 1.68 usec after the ${ }^{\text {6 }}$ output of Gate X goes to the high state. With $\mathrm{VCC}=5.00$ and the resistor and capacitor values at the low end of the tolerance range, Gate Y will delay 1.43 usec before switching. With Vcc $=4.50$ and the timing components at the high end of the tolerance range, Gate Y will delay 2.05 usec before switching. Thus. it is seen that for curves A and B, a "B" switch count of 2 would be obtained; while an erroneous " B " switch count of 3 would be obtained for the conditions represented by curve C.

Figure 5. Voltage Tolerance Versus Time Delay Chart

PRINTED CIRCUTT CARD ADAPTERS

Several printed circuit card adapters are available to interconnect between the Card Tester and various printed circuit card families contained in this manual. Following is a cross-reference table of the individual card adapters and associated printed circuit card family. Pin number cross-reference and card adapter identification for individual PC card adapters are provided in the following tables and illustrations.

Table 1. Printed Circuit Card Adapters

DYNATRONICS PART NO.	MILITARY NOMENCLATURE	ADAPTS CARD TESTER TO
12-890051	MX-9089/USM-371	23 Pin Anelex
12-890052	MX-9090/USM-371	44/88 Pin Anelex
12-890053	MX-9091/USM-371	22 Pin SN-394 (RED)
12-890054	MX-9092/USM-371	26 Pin SN-394 (BLACK)
12-890056	MX-9093/USM-371	22 Pin MD-674
12-890059	MX-9094/USM-371	43/86 Pin FGC
12-890055	MX-9095/USM-371	60 Pin TCU
12-890050	MX-9096/USM-371	46 Pin GDE
12-890058	MX-9097/USM-371	25 Pin FGC

PRINTED CIRCUIT CARD ADAPTERS MX-908S/USM-371

Table 2. Printed Circuit Card Adapter MX-9089/USM-371

ADAPTER MX-9089/USM-371	CARD TESTER PIN NUMBER	ADAPTER MX-9089/USM-371	CARD TESTER PIN NUMBER
1	46	12	35
2	45	13	34
3	44	14	33
4	43	15	32
5	42	16	31
6	41	17	30
7	40	18	29
8	39	19	28
9	38	20	27
10	37	21	26
11	36	22	25
			24

Figure 6. Printed Circuit Card Adapter MX-9089/USM-371
Table 3. Printed Circuit Card Adapter MX-9090/USM-371

$\begin{aligned} & \text { ADAPTER } \\ & \text { MX- } 9090 / \text { USM-371 } \end{aligned}$	CARD TESTER PIN NUMBER	$\begin{aligned} & \text { ADAPTER } \\ & \text { MX-9090/USM-371 } \\ & \hline \end{aligned}$	CARD TESTER PIN NUMBER
1	55	23	36
2	53	24	34
3	51	25	32
4	49	26	30
5	47	27	28
6	45	28	26
7	43	29	24
8	41	30	22
9	39	31	20
10	37	32	18
11	35	33	16
12	33	34	14
13	31	35	12
14	29	36	10
15	52	37	8
16	50	38	6
17	48	39	4
18	46	40	2
19	44	417	
20	42	42 \}	54
21	40	43 ?	
22	38	$44\}$	56

Figure 7. Printed Circuit Card Adapter MX-9090/USM-371
(44/88 Pin Anelex)

PRINTED CIRCUIT CARD ADAPTERS MX-9091/USH-371

Table 4. Printed Circuit Card Adapter MX-9091/USM-371

ADAPTER MX-9091/USM-371					CARD TRSTER PIN NUMBER	ADAPTER MX-90Si/LSM-371	CARD TESTER PIN NUMBER
1	22	12	11				
2	21	13	10				
3	20	14	9				
4	19	15	8				
5	18	16	7				
6	17	17	6				
7	16	18	5				
8	15	19	4				
9	14	20	3				
10	13	21	2				
11	12	22	1				

PRINTED CIRCUIT CARD ADAPTERS MX-9092/USS3 371
Table 5. Printed Circuit Card Adapter MX-9092/USM-371

$\begin{gathered} \text { ADAPTER } \\ \text { MX- } 9092 / \text { USM-371 } \end{gathered}$	CARD TESTER pin number	$\begin{gathered} \text { ADAPTER } \\ \text { MX-9092/USM-371 } \end{gathered}$	CARD TESTER PIN NUMBER
1	52	29	26
2	51	30	25
3	50	31	24
4	49	32	23
5	48	33	22
6	47	34	21
7	46	35	20
8	45	36	19
9	44	37	18
10	43	38	17
11	42	39	16
12	41	40	15
13	40	41	14
14	39	42	13
15	38	43	12
16	37	44	11
17	36	45	10
18	35	46	9
19	34	47	8
20	33	48	7
21	32	49	6
22	31	50	5
23	30	51	4
24	29	52	3
25	28	53	2
26	27	54	1

Figure 9. Printed Circuit Card Adapter MX-9092/USM-371

Table 6. Printed Circuit Card Adapter MX-9093/USM-37 Pin Cross Reference

ADAPTER MX-9093/USM-371	CARD TESTER PIN NUMBER	$\begin{gathered} \text { ADAPTER } \\ \text { MX-9093/USM-371 } \end{gathered}$	CARD TESTER PIN NUMBER
A	1	N	12
B	2	P	13
C	3	R	14
D	4	S	15
E	5	T	16
F	6	χ^{-}	17
H	7	v	18
J	8	w	19
K	9	x	20
L	10	Y	21
M	11	Z	22

Figure 10. Printed Circuit Card Adapter MX-9093/USM-371

Table 7. Printed Circuit Card Adapter MX-9094/USM-371

$\begin{gathered} \text { ADAPTER } \\ \text { MX-9094/USM-371 } \end{gathered}$	CARD TESTER PIN NUMBER	ADAPTER MX-9094/USM-371	CARD TESTER PIN NUMBER
1	1	45	23
3	2	47	24
5	3	49	25
7	4	51	26
9	5	53	27
11	6	55	28
13	7	57	2.9
15	8	59	30
17	9	61	31
19	10	63	32
21	11	65	33
23	12	67	34
25	13	69	35
27	14	71	36
29	15	73	37
31	16	75	38
33	17	77	39
35	18	79	40
37	19	31	41
39	20	83	42
41	21	85	43
43	22		

Figure 11, Printed Circuit Card Adapter MX-9094/USM-371

Table 8. Printed Circuit Card Adapter MX-9095/USM-371

$\begin{gathered} \text { ADAPTER } \\ \text { MX-9095/USM-37! } \end{gathered}$	CARD TESTER PIN NIJMBER	ADAPTER MX-9095/USM-371	CARD TESTER PIN NUMBER
1	50	31	$5.4 .5 \mathrm{~V})$
2	51	32	No connection
3	No connection	33	55
4	49	34	53
5	47	35	52
6	45	36	50
7	43	37	48
8	41	38	96
9	39	39	44
10	37	40	42
11	35	41	40
12	33	42	38
13	31	43	36
14	29	44	34
15	27	45	32
16	25	46	30
17	23	47	28
18	21	48	26
19	19	49	24
20	17	50	22
21	15	51	20
22	13	52	18
23	11	53	16
24	9	54	14
2 C	7	55	12
26	5	56	10
27	3	57	8
28	No counectror:	58	6
29	No curinect.on	59	4
30	1	60	2

Figure 12. Printed Circuit Card Adapter MX-9095/USM-371

Table 9. Printed Circuit Card Adapter MX-9096/USM-371

$\begin{aligned} & \text { ADAPTER } \\ & \text { MX- } 9096 / \text { USM- } 371 \end{aligned}$	CARD TESTER PIN NUMBER	$\begin{aligned} & \text { ADAPTER } \\ & M \mathrm{M}-9096 / \text { USM-371 } \end{aligned}$	CARD TESTER PIN NUMBER
*1	55	A	So (GRD.)
*2	53	B	54(4.75V)
3	51	C	50
4	49	D	50
5	47	E	48
6	45	F	46
7	43	H	44
8	41	J	42
9	39	K	40
10	37	L	38
11	35	M	36
12	33	N	34
13	31	P	32
14	29	R	30
15	27	S	28
16	25	T	26
17	23	U	24
18	21	v	22
19	19	w	20
20	17	x	18
21	15	Y	16
22	13	2	14
23	11	AA	12

Figure 13. Printed Circuit Card Adapter MX-9096/USM-371 46 Pin GDE

Table 10. Printed Circuit Card Adapter MX-9097/USM-371 Pin Crosses Réference

ADAPTER MX-9097/USM-371	CARD TESTER PIN NUMBER	ADAFTER MX-9097/USM-371	CARD TESTER PIN NUMBER
1	25	13	13
2	24	14	12
3	23	15	11
4	22	16	10
5	21	17	9
6	20	18	8
7	18	19	7
8	17	20	6
9	16	21	5
10	15	22	4
11	14	23	3
12		24	2
			1

Figure 14. Printed Circuit Card Adapter MX-9097/USM-371 25 Pin FGC

22

C. Logic SM-E-546595

NOTES：

1．＊DENOTES INVERTED SIGNAL．
2．VCC（ +5 EXT ）LOGIC SUPPLY ADJUSTED TO +4.75 V ．
3．ENCIRCLED OUTPUT PINS ARE＂KEY＂AND SHOULD BE GO／NO－GO TESTED FIRST．

4．OUTPUT SIGNALS ARE NOT SYNCRONOUS WITH TEST SIGNALS BUT ARE SHOWN CORRECTLY WITH RESPECT TO ONE ANOTHER．

NOTES

1. * DENOTES INVERTED SIGNAL
2. VCC (+5EXT) LOGIC SUPPLY ADJUSTED TO +4.75 V .
3. IN ICT-102 TESTER "\#" DENOTES ALL POSITIONS OF "B" SWITCH ARE NO-GO FOR VALID TEST. IN ICT-103 TESTER PRESS "B" SWITCH "\#" WHERE INDICATED BY "\#" ; VALID TEST IS GO INDICATION
4. ENCIRCTED OUTPUT PINS ARE "KEY" AND SHOULD BE GO/NO-GO TESTED FIRST.

5 BEFORE PROCEEDING WITH TEST PLACE A jUM PER FROM CS MODE TERMINAL TO MODE III TERMINAL.
6. NT INDICATES NO TEST
P.C. Assembly SI

$$
\begin{aligned}
& \text { P. C. Assembly } \\
& \text { P. L. Logic SM-E-J40 }-546004
\end{aligned}
$$

APD．JU

GOVT APPD
T APPD._J $3 N$

DATE 7-2-71

NOTES:

1. * denotes inverted signal.
2. VC © (- if:XT) LOGIC SUPPLit ADUSTED TO +4.75 V
3. ENCIRCLED OUTPUT PINS ARE "KEY" AND SHOULD BE GO/NO-GO TESTED FIRST.
4. IN ICT-102 TESTER"\#" DENOTES ALL TOSTIONS
OF "B ' SWITCH ARE NO-GC FOR VALID TEST
IN ICT-103 TESTER PRESS "B" SWIICH
Where indicated by "\#": VAall tust is go
NDICAIION

06-000129

GOVT APPD. JN OATE?-7.71
3. IN ICT-102 TESTER "\#" DENOTES ALL POOATIONS OF "B" SWITCH ARE NO-GO FOR VALID TEST. IN ICT-103 TESTER PRESS "B" SWITCH "\#" WHERE INDICATED BY "*" - VALDD TEST IS GO indication.
4. encirc: ed output pins are "key" and SHOULD EE GO/NO-GO TESTED FIRST.

[^0]

L SM-E.546632 DOC. NO. 23-2175.11 a

* DENOTES INVLRTLID SIGNAL.
. NT INDICATES NO TEST.

2. VCC (+5 EXT) LOGIC SUPPLY ADJUSTED $T O+4.75 \mathrm{~V}$
3. ENCIRCLED OUTPUT PINS ARE "KEY" AND SHOULD BL GO/iO-GO TESTED FIRST.

P.C. Assembly SM-E-546635

L. Sumesceses poc. NO, 22-217C22

NOTES:

1. * DENOTES INVERTED SIGNAL.
2. $\mathrm{VCC}(+5 E X T)$ LOGIC SUPPLY ADJUSTED TO +4.75 V
3. IN ICT-102 TESTER "\#" DENCTES ALL POSITIONS OF "B" SWITCH ARE NO-GO FOR VALID TEST.

IN ICT-103 TESTER PRESS "B" SWITCH "\#" WHERE INDICATED BY "\#"; VALID TEST IS GO INDICATION.
4. ENCIRCLED OUTPUT PINS ARE "KEY" AND SHOULD RF, GO, NO-GO TESTED FIRST.

[^1]P.C. logne SM-E-546637
i) Na. 23-2177-22

A－9．Jol ：－7ーフーフ

NOTES：
1．＊DENOTES INVERTED SIGNAL．
4 JUM PER ACROSS PINS 1 AND GRD ON FLASH ASSIGNMENT PATCH BOARD PRIOR TO TEST．

3．encipcled output pins are＂kiy＂and should be go ic－co testelu fikst．

 NDICATION.

06-000129

[^2]P.C. Logic SM-E-5twot,
\qquad

06-000129

NOTES：
1． ＊DENOTES INVERTED SIGNAL．
2．VCC（＋5EXT）LOGIC SUPPLY ADJUSTED TO＋4．75V．

DUPLICATE WAVEFORM

PC Assembly SM-E-546831
88
PC Logic SM-D-5468730

 WOAO-GO TUSTED FTKSI.

GUVT APPD._BN
DATE 2-7-ie

06-000129

$$
\text { P.C. Assembly } 5 \mathrm{~m}-\mathrm{E}-544,340
$$

P.C. Logic SM-E-54683

Doc. No. 23-2188-11

END

$$
02-05.83
$$

dATE

[^0]: 48 P.C. Assembly SM-E-5466
 P.C. Lójic SM-E-546625 . No. 21-217~ー

[^1]: P.C. Assembly SMi-E-546633

[^2]: 70

